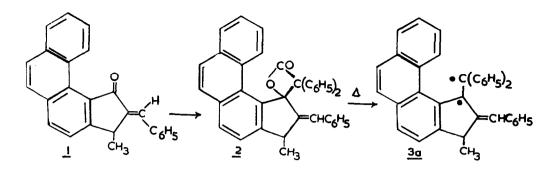
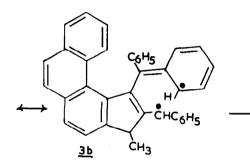
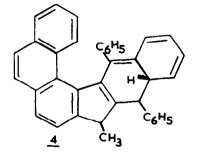
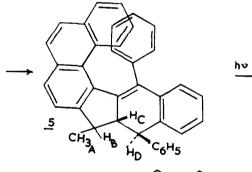
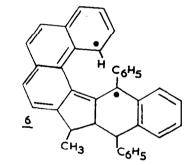
THE PHOTOREARRANGEMENT OF THE OVERCROWDED HYDROCARBON

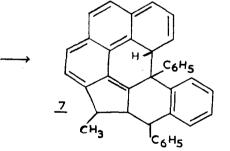

10, 10a-DIHYDRO-9-METHYL-10, 15-DIPHENYL-9H-BENZO[5,6]INDENO[2,1-c]PHENANTHRENE

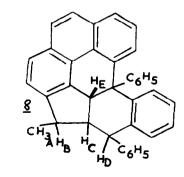

H. G. Heller and K. Salisbury


Edward Davies Chemical Laboratory, University College of Wales, Aberystwyth (Received in UK 16 January 1968)


Recently we reported a number of intramolecular hydrogen transfer reactions of sterically hindered compounds¹. We now wish to report the novel rearrangement reaction of the overcrowded hydrocarbon 10,10a-dihydro-9-methy1-10,15-dipheny1-9H-benzo[5,6]indeno [2,1-c]phenanthrene (5). 1-0xo-2-benzylidene-3-methyl-cyclopenta[c]phenanthrene (1) reacts with diphenylketen at 180° to give the thermally unstable β -lactone (2), which eliminates carbon dioxide to give the excited state of 1-diphenylmethylene-2-benzylidene-3-methyl -cyclopenta[c]phenanthrene (3a,3b), which does not relax to the ground state as does 1-diphenylmethylene-2-benzylideneindane², but cyclises to the intermediate (4) which undergoes a 1,5-hydrogen shift through a six-membered transition state to yield the overcrowded hydrocarbon (5), bright yellow crystals with a green fluorescence, m.p. 231-232°. When this hydrocarbon in light petroleum is exposed to 366 mµ radiation, it rearranges to 5a,6,1Ob,13e-tetrahydro-5-methyl-6,1Ob-diphenyl-5H-cyclo-penta[def] naphtho[8,2,1-pqr]chrysene (8), colourless crystals with a blue fluorescence, m.p. 264-265⁹. This photorearrangement is pictured as activation of the hydrocarbon (5) to a low lying excited singlet state (6), followed by cyclisation to the intermediate (7), which undergoes a 1,5-intramolecular hydrogen shift through a six-membered transition state as outlined below.


The structures of hydrocarbons (5) and (8) follow from their n.m.r. and u.v. spectra. Both compounds gave satisfactory analyses.





TABLE

N.m.r. and u.v. spectral data

		Compound (5)	Compound (8)
u.v.	ک _{max} مېد	245, 303, 318, 360,	268, 276, and 310
		375, and 395	
	(log€)	4.63, 4.14, 4.10,	4.34, 4.31, and 3.83
		4.10, 4.07, and 4.05	
n.m.r.			
H _A	7	C 8.55 doublet	τ 8.14 doublet
н _в		6.90 quintet	6.00 quintet
н _с		6.18 quartet	6.52 multiplet
н _D		5.34 doublet	5.59 doublet
H _E			5.02 doublet

J_{CD} 5.8 ----J_{CE} Double-resonance irradiation of hydrocarbon (5) at τ 5.34 caused H_C to become a doublet ($J_{BC} = 3.5 \text{ c./sec.}$); at T 6.18, H_D to become a singlet; and at T 6.9, H_A to become a singlet and H_{C} to become a doublet (J_{CD} = 4.75 c./sec.). Double-resonance irradiation of hydrocarbon (8) at τ 5.02 caused the multiplet at τ 6.52 to become resolved into a quartet $(J_{CD} = 6.3 \text{ c./sec.}, J_{BC} = 4.0 \text{ c./sec.})$. Irradiation at $\mathbf{\tau}_{6.52}$ caused H_{D} and H_{E} to become singlets; at τ 6.00, H_A to become a singlet; and at τ 8.14, H_B to become a doublet

3.5 c./sec.

4.75

4.0 c./sec.

6,3

 $(J_{BC} = 4.0 \text{ c./sec.}).$

J_{AB}[≃]J_{BC}

REFERENCES

1. H.G. Heller, D.Auld, and K. Salisbury, J. Chem. Soc., (C), 682, 1552, and 2457 (1967). 2. N.Campbell, P.S.Davison, and H.G.Heller, J. Chem. Soc., 993 (1963).